If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5q^2-60q+200=0
a = 1.5; b = -60; c = +200;
Δ = b2-4ac
Δ = -602-4·1.5·200
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-20\sqrt{6}}{2*1.5}=\frac{60-20\sqrt{6}}{3} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+20\sqrt{6}}{2*1.5}=\frac{60+20\sqrt{6}}{3} $
| 3/2q^2-60q+200=0 | | 4x=-10.2 | | 2x+3x+130=180 | | 2/5=1x-7/10 | | 4/3x-5=7 | | 3/2*q^2-60q+200=0 | | 2x-2+10-3x=180 | | x+54+x+84+60=180 | | y-2+2=-8+2 | | 6r–8r=-14 | | 49=3p+19 | | 9y+10-2y=-18 | | 20x-4=19x+2 | | 7y+3y-1=6 | | 12x+8=11x+19 | | -6u+8(u+5)=28 | | 4=-4x-3 | | 7=17-4/3x | | 39=2(y-3)+7y | | -30=-5/2u | | 6^2+23x-18=0 | | 4x^2-7x+8=6x+5 | | 5(x+8)-3x=32 | | -w+21=190 | | 292-u=64 | | 229=184-w | | 4q^2-23q+21=0 | | 19c−13c=12 | | x^2-3x-8=-7x-3 | | -21=3-8v | | 10y-9=-19 | | 19+p=-19-p |